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Id proteins are dominant negative regulators of basic
helix-loop-helix transcription factors. Previous work in
our laboratory has shown that constitutive expression
of Id-1 in SCp2 mouse mammary epithelial cells inhibits
their differentiation and induces proliferation, inva-
sion, and migration. Id-1 expression also correlates with
the invasive and aggressive potential of human breast
cancer cells. However, little is known about Id-1 target
genes that are important for regulating normal and
transformed breast epithelial cell phenotypes. Now we
report the cloning of a novel zinc finger protein, Zfp289,
using degenerate primers to specifically amplify cDNAs
from Id-1-transfected SCp2 cells. Zfp289 has homology
with a yeast zinc finger protein, the GTPase-activating
protein Gcs-1, which was initially identified as a gene
required for the re-entry of cells into the cell cycle after
stationary phase growth. Zfp289 mRNA expression pat-
tern correlates with Id-1 expression in SCp2 mammary
epithelial cells under various experimental conditions
as well as in the mouse mammary gland at different
stages of development. It is predominantly present in
the cytoplasm of the cells as evident from green fluores-
cent protein fusion protein localization. SCp2 mammary
epithelial cells with constitutive expression of Zfp289
have a higher S-phase index, compared with control
cells, when cultured in a serum-free medium. We con-
clude that the novel zinc finger protein Zfp289, which
may represent the mammalian homologue of Gcs-1, is
potentially an important mediator of the Id-1-induced
proliferation pathway in mammary epithelial cells.

Basic helix-loop-helix (bHLH)1 factors are transcription fac-
tors that bind DNA as homo- or heterodimers and regulate
transcription of target genes containing E-boxes (CANNTG) or
E-box-like sequences in their promoters. Dimerization occurs

through interactions of the HLH domains, while binding to
DNA is mediated by the basic domain. These factors have been
shown to regulate the expression of tissue-specific genes in a
number of mammalian and nonmammalian organisms (1).

Id proteins (for “inhibitors of differentiation or DNA bind-
ing”) are dominant negative regulators of the bHLH transcrip-
tion factors. Id proteins contain an HLH domain, allowing them
to form dimers with bHLH proteins, but they lack the basic
domain, and therefore such dimers, Id/bHLH, do not bind DNA
(2). Therefore, Id proteins do not regulate transcription di-
rectly, but indirectly, by preventing bHLH proteins from inter-
acting with the promoter of various target genes. The role of Id
proteins in the tissue-specific regulation of growth and differ-
entiation has been examined in several systems. For example,
Id-1 has been found to inhibit differentiation in myoblast (2),
trophoblast (3), erythroid (4), B-lymphocyte (5, 6), and myeloid
cells (7).

Previous studies in our laboratory have shown that consti-
tutive expression of Id-1 results in the inhibition of differenti-
ation of SCp2 mouse mammary epithelial cells (8). It also
induces proliferation, invasion, and migration of the same cells
(9) and increased secretion of a 120-kDa matrix metalloprotein-
ase, the level of which correlates well with the invasive ability
of these cells. In addition, Id-1 is highly expressed in aggressive
and invasive human breast cancer cell lines as compared with
noninvasive cell lines (9) and in biopsies from invasive ductal
carcinomas as compared with ductal carcinomas in situ (10).

Investigations have shown that Id-1 is a positive regulator of
G1-S phase transition during cell cycle progression and is also
involved in inducing apoptosis (11–16). A recent report demon-
strated that Id-1 and Id-3 might also control angiogenesis by
regulating the growth and invasion of endothelial cells (17).
However, little is known about Id target genes, which are
important for regulating growth, differentiation, invasion, and
apoptosis of normal and transformed mammary epithelial cells.

In this paper, we report the cloning of a novel Id-1-induced
zinc finger protein, Zfp289, which is predominantly localized in
the perinuclear compartment of the cells and which appears to
function as a GTPase-activating protein (GAP). Zfp289 expres-
sion is correlated with the proliferative stages of mammary
epithelial cells in culture and during mammary gland develop-
ment, and this novel zinc finger protein is able to induce higher
S-phase entrance when constitutively expressed in epithelial
cells.

MATERIALS AND METHODS

cDNA Cloning of Zfp289—We used PCR amplification to isolate
genes specifically regulated by Id-1, as indicated by their up-regulation
in SCp2 cells transfected with Id-1. Our rational for selecting the
degenerate primers was that we previously demonstrated a novel ma-
trix metalloproteinase family member to be up-regulated in SCp2 cells
transfected with Id-1 (9). Since we were particularly interested in
cloning this novel metalloproteinase, and since most of the known
metalloproteinases have a “Cys” motif and a “zinc” binding motif in

* This work was supported by Postdoctoral Fellowship 5FB-0112
from the University of California Breast Cancer Research Program (to
J. S.), by a fellowship from Fondazione Bonino-Pulejo (Italy) (to S. P.),
by Grant 3IB-0123 from the University of California Breast Cancer
Research Program, and by the National Institutes of Health-NCI Grant
RO1 CA82548 (to P.-Y. D.). The costs of publication of this article were
defrayed in part by the payment of page charges. This article must
therefore be hereby marked “advertisement” in accordance with 18
U.S.C. Section 1734 solely to indicate this fact.

The nucleotide sequence(s) reported in this paper has been submitted
to the GenBankTM/EBI Data Bank with accession number(s) AF229439.

‡ To whom correspondence should be addressed: Geraldine Brush
Cancer Research Inst., California Pacific Medical Center, Stern Bldg.,
2330 Clay St., San Francisco, CA 94115. Tel.: 415-561-1760; Fax: 415-
561-1390; E-mail: pdesprez@cooper.cpmc.org.

1 The abbreviations used are: bHLH, basic helix-loop-helix; GAP,
GTPase-activating protein; PCR, polymerase chain reaction; kb, kilo-
base(s); GFP, green fluorescent protein; EGFP, enhanced green fluores-
cent protein; ARF, ADP-ribosylation factor; ANOVA, analysis of
variance.

THE JOURNAL OF BIOLOGICAL CHEMISTRY Vol. 276, No. 15, Issue of April 13, pp. 11852–11858, 2001
© 2001 by The American Society for Biochemistry and Molecular Biology, Inc. Printed in U.S.A.

This paper is available on line at http://www.jbc.org11852



their sequence, we designed degenerate primers against two regions of
interest, one containing a cysteine residue Cys (PRCGXPD), the other a
catalytic domain binding zinc ions (VAAHEFGHALGLH). Cys and zinc
sequences were as followed: 59-S(c/g)GR(g/a) TGT GGY(c/t) S(c/g)W
(a/t)R(g/a) CCN(a/c/g/t) GA-39 and 59-GCR(g/a) TGS(g/c) CCV(a/c/g)
AAY(c/t) TCR(g/a) TGS(c/g) GC-39.

Total RNA was isolated from SCp2-Id-1-transfected cells and SCp2
control cells, and cDNA was prepared. Specific AP-1 adaptors (Mara-
thon cDNA amplification kit) were ligated at both ends of the cDNAs,
and a first round of PCR amplification was performed using adaptor-
specific primers on one side and zinc primers on the other. A second
round of amplification was performed using the PCR product from the
first round and using Cys and zinc primers. Only two amplified prod-
ucts of 0.8 and 2.6 kb were visible. We used annealing temperatures of
45 and 50 °C to obtain sharp bands at 0.8 and 2.6 kb, respectively. Both
of these bands were extracted and cloned into a TOPO vector for
sequencing.

Cell Culture—SCp2 mouse mammary epithelial cells were grown in
a 1:1 mixture of Dulbecco’s modified Eagle’s medium and F-12 (Dulbec-
co’s modified Eagle’s medium-F-12) containing 5% heat-inactivated fe-
tal bovine serum and insulin (5 mg/ml), at 37 °C in a humidified 5% CO2

atmosphere, as described previously (18). For experiments in serum-
starved conditions, fetal bovine serum was omitted. Pool populations of
SCp2 cells transfected with an empty vector or with the murine Id-1
sense cDNA driven by the mouse mammary tumor virus promoter were
as described previously (8). Single cell-derived clones from SCp2 cells
transfected with an Id-1 antisense cDNA (8) were derived by plating
cells at limiting dilutions in 24-well plates.

Plasmids Construction and Transfection—The Zfp289 encoding re-
gion including the Kozak sequence was amplified from the BamHI site
at the 59-end, to either BamHI (for LXSN vector) or SalI site (for pBabe
vector) at the 39-end. The restriction digested fragments were then
cloned into appropriate sites of LXSN and pBabe vectors. These viral
vectors were then packaged in TSA-54 cells (Cell Genesis, Foster City,
CA). After infecting the SCp2 cells with control or Zfp289 vectors, stably
transfected cells were selected with neomycin and puromycin (for LXSN
and pBabe vectors, respectively).

For intracellular localization studies, the full-length coding sequence
of Zfp289 was cloned into a pEGFP vector (CLONTECH) between the
SalI and BamHI sites. The pEGFP vector was transfected using Super-
fect transfection reagent (Qiagen). Neomycin-resistant cells were sub-
cultured, and localization of the GFP fusion protein was determined
under inverted fluorescent microscopy.

RNA Isolation and Northern Analysis—Total cellular RNA was iso-
lated and purified as described by Chomczynski and Sacchi (19). RNA
(15 mg) was size-fractionated by electrophoresis through denaturing
formaldehyde-agarose gels and transferred to Nylon membrane (Hy-
bond-N from Amersham Pharmacia Biotech). The blots were hybridized
with 32P-labeled probes prepared by random oligonucleotide priming,
washed, and exposed to Kodak XAR-5 film for autoradiography (20).
The multiple tissue Northern blot was purchased from CLONTECH
and probed as above. The Zfp289 probe was the PCR-amplified 2.6-kb
fragment described under “cDNA Cloning of Zfp289,” whereas b-casein
and Id-1 probes were as described previously (8). The clusterin probe
was obtained by subtractive hybridization,2 and the b-actin probe was
obtained from CLONTECH.

Preparation of Mammary Gland RNA—BALB/c wild type virgin fe-
male mice were purchase from Simonsen Laboratories, Inc. (Gilroy, CA)
and some were mated at the age of 12 weeks. The animals were
sacrificed, and biopsies of the fourth inguinal mammary gland were
performed at 3, 7, and 12 weeks of age for the virgin stage; at days 2 and
12 of pregnancy; and at days 2, 7, 20, and 21 of lactation. Mammary
glands were immediately frozen at 270 °C until utilized for total RNA
isolation. Total RNA was isolated using TriPure Isolation reagent
(Roche Molecular Biochemicals).

DNA Synthesis and Autoradiography—Cells (104 or 5 3 104) plated
on coverslips were labeled with [3H]methylthymidine (10 mCi/ml; 60–70
Ci/mmol) for at least 7 h, washed twice with phosphate-buffered saline,
then fixed for 5 min with 1:1 (v/v) mixture of acetone and methanol kept
at 220 °C. Nuclei were stained with 4,6-diamidino-2-phenylindole-di-
luted 1:10,000 in phosphate-buffered saline for 2 min. The coverslips
were air-dried, coated with Kodak NTB2 emulsion (1:2 dilution), and
exposed for 16–24 h. The coverslips were developed with D19, fixed
with Rapid-fix, and viewed by phase contrast microscope.

Purification of Zfp289 and ARF-1—The coding region of Zfp289 was
amplified by PCR and then cloned into a bacterial expression vector
pTrcHis A (Invitrogen). The 63His-tagged protein was expressed in the
Escherichia coli strain DH5a. After inducing protein expression for 5 h
with 1 mM isopropyl-b-D-thiogalactopyranoside, bacteria were pelleted
and lysed under denaturing conditions in buffer containing 6 M guani-
dine hydrochloride, 10 mM Tris-HCl, 100 mM Na2PO4, pH 8.0, for 1 h at

2 J. Singh and P. Y. Desprez, unpublished data.

FIG. 1. A, correlation between Id-1 expression and expression of two
other genes. Cells were cultured under different conditions, and RNA
extraction and Northern analysis were performed as described under
“Materials and Methods.” Lane 1, SCp2 control cells (pool population)
growing in 5% fetal bovine serum; lane 2, SCp2 control cells (pool
population) in serum-free medium for 2 days; lane 3, Id-1 sense-trans-
fected SCp2 cells (pool population) in serum-free medium for 2 days. B,
Northern blot analysis of Zfp289, Id-1, and b-casein comparing nine
different clones expressing variable amounts of Id-1. These clones were
isolated from a pool population of Id-1 antisense transfected SCp2 cells.
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room temperature with continuous shaking. Cellular debris was then
pelleted by centrifugation of cell lysate at 10,000 3 g for 30 min at room
temperature. The supernatant was mixed with nickel-nitrilotriacetic
acid beads (Qiagen) and stirred for 1 h at room temperature. The beads
were then transferred to a column and sequentially washed with Buffer

1 (6 M urea, 20 mM Tris-HCl, 0.5 M NaCl, pH 8.0) and Buffer 2 (20 mM

Tris-HCl, 0.15 M NaCl, pH 8.0) to remove the nonspecific proteins and
to renature the nickel-nitrilotriacetic acid-bound proteins (21). The
63His-tagged ZFP-289 protein was eluted with Buffer 2 containing 50
mM EDTA. The eluted protein was concentrated by using centricon

FIG. 2. Nucleotide sequence and deduced amino acid sequence of murine Zfp289. The N-terminal zinc finger domain is underlined, and
the putative polyadenylation signal is shaded.

Novel Id-1-induced Zinc Finger Protein11854



column, and the purity of the sample (75–80%) was determined by
SDS-polyacrylamide gel electrophoresis. Full-length coding region of
mouse ARF-1 (ADP-ribosylation factor-1) was PCR-amplified and
cloned into the bacterial expression vector pTrcHis A. After induction of
recombinant ARF-1 for 5 h with 1 mM isopropyl-b-D-thiogalactopyrano-
side, the bacteria were lysed and supernatant mixed with nickel-nitrilo-
triacetic acid beads as described above. The beads were transferred to a
column and washed with Buffer 3 (8 M urea, 10 mM Tris-HCl, 0.1 M

Na2PO4, pH 6.3). The bound 63His-tagged ARF-1 was eluted with
Buffer 4 (8 M urea, 10 mM Tris-HCl, 0.1 M Na2PO4, pH 5.9) and then
again with Buffer 4 containing 250 mM imidazole. The eluted ARF-1
was renatured by sequential dialysis against 4 M urea, 100 mM Na2PO4,
10 mM Tris-HCl, pH 8.0, then against 2 M urea 10 mM Tris-HCl, pH 8.0,
and finally twice against 10 mM Tris-HCl, pH 8.0. The renatured ARF-1
was concentrated, and its purity (about 80–85%) was determined by
SDS-polyacrylamide gel electrophoresis analysis.

ARF-GAP Assay—ARF-GAP activity was assayed by measuring the
effects of the putative GTPase-activating protein (Zfp289) on the hy-
drolysis of ARF-bound GTP to GDP, with some modifications of the
assay previously described by Goldberg (22). Briefly, ARF-1 was incu-
bated with [g-32P]GTP for 30 min in binding buffer (20 mM Tris-HCl, 5
mM MgCl2, 0.1% Triton X-100, 0.1 M NaCl, 1 mM EDTA, 1 mM dithio-
threitol, 1 mg/ml bovine serum albumin, pH 7.5) containing 0.3 mM

[g-32P]GTP. ARF ([g-32P]GTP) was then diluted 10 times with binding
buffer. GTPase assay was done by incubating GTP-bound ARF-1 with
or without Zfp289 at room temperature for 20 min in a 25-ml reaction
mixture. After incubation, the samples were spotted on nitrocellulose
membrane, washed four times with Tris buffer saline, and radioactivity
assayed by scintillation counting. The potential GTPase-activating pro-
tein activity of Zfp289 was determined as the decrease of label associ-
ated with ARF-1.

RESULTS

Isolation of Two Id-1-inducible Genes in SCp2 Cells—Using
degenerate primers as described under ”Materials and Meth-
ods,“ we isolated two cDNA clones (0.8 and 2.6 kb) preferen-
tially up-regulated in SCp2-Id-1-transfected cells. A partial
sequencing of the 0.8-kb band revealed that it corresponded to
a known gene encoding histone H3.3. Since we only performed
a partial sequencing of this clone and did not analyze it further,
we could not ascertain the presence of the zinc and Cys motifs.
Using this cDNA as a probe, two mRNAs of 1.2 and 1.8 kb were
detected in SCp2 cells cultured in 5% serum (Fig. 1A, lane 1)
and in SCp2-Id-1 serum-starved for 2 days (Fig. 1A, lane 3).

The other 2.6-kb band corresponded to a gene encoding a
mRNA of about 2.9 kb. We found a higher expression of this
2.9-kb transcript in serum-starved Id-1-transfected cells (Fig.
1A, lane 3) as compared with control cells, which were also
serum-starved for 2 days and which showed a reduced amount
of Id-1 protein (Fig. 1A, lane 2).

We detected a high level of expression of this 2.9-kb tran-
script in control SCp2 cells cultured in the presence of 5%

serum (Fig. 1A, lane 1). This level of expression was not further
increased in Id-1-transfected SCp2 cells also cultured in 5%
serum (data not shown). This may be due to the large amount
of endogenous Id-1 proteins, up-regulated by serum in control
cells, which may be sufficient to interact with all bHLH pro-
teins present. The level of expression of target genes, such as
the one encoding the 2.9-kb transcript, may then correspond to
a maximum.

As a control of the loading, we used ethidium bromide stain-
ing of ribosomic RNA as well as b-actin, which did not show a
difference of expression at the mRNA level between control and
Id-1-transfected cells in serum-starved conditions for 2 days.
However, mRNA levels of another gene, clusterin, a glycopro-
tein involved in cell-cell interaction, were down-regulated in
the presence of Id-1.

To establish further that Id-1 up-regulates expression of
Zfp289, we analyzed mRNA levels of both genes in nine differ-
ent clones from SCp2 cells transfected with Id-1 antisense
vectors (8) and treated with growth factors, lactogenic hor-
mones, and extracellular matrix. As shown in Fig. 1B, these
clones expressed variable amounts of Id-1. In each of these
clones, the levels of Zfp289 strongly correlated with that of Id-1.
Four clones (lanes 1, 4, 6, and 8) expressed high levels of Id-1
and Zfp289, whereas in five clones (lanes 2, 3, 5, 7, and 9) Id-1
expression was considerably reduced, and therefore Zfp289
mRNA levels were significantly down-regulated. As described
previously (8, 9), the expression of b-casein (a differentiation-
related gene) was inversely correlated with that of Id-1.

Sequence Analysis—The nucleotide sequence analysis of the
2.6-kb fragment (plus the sequence of overlapping expressed
sequence tags at the 59- and 39-ends) revealed an open reading
frame of 1560 base pairs, encoding a 519-amino acid polypep-
tide with a predicted molecular mass of about 57 kDa (Fig. 2).
We could clearly detect a sequence on this cDNA that was
homologous to the zinc degenerate primer. We attempted to
determine any sequence homology to the Cys motif, but due to
the level of degeneracy of this Cys primer, we were not able to
locate any region of clear homology. A search of the protein
data base revealed that this predicted 57-kDa protein was a
unique sequence, having, however, a 48% homology and 32%
identity with the yeast zinc finger protein Gcs-1 (23). This
putative mouse protein, which we called Zfp289 after submission to
the nomenclature committee, has one zinc finger domain at the N
terminus, with a CxxCx(16)CxxC motif encompassing 26–49 amino

FIG. 3. Tissue distribution of Zfp289 and Id-1 in multiple tissue
Northern blot of mice. b-Actin was used as an internal control.

FIG. 4. Northern blot analysis of Zfp289, Id-1, and b-casein
during mammary gland development in mice. V3, V7, and V12:
glands from virgin 3-, 7-, and 12-week-old mice, respectively; P2 and
P12, glands from 2- and 12-day pregnant mice, respectively; L2, L7,
L20, and L21: glands from 2-, 7-, 20-, and 21-day lactating mice,
respectively.
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acids. This zinc finger domain has 66% homology with the zinc
finger domain in the yeast protein Gcs-1.

Tissue Distribution—Northern blot analysis of Zfp289 re-
vealed a predominantly 2.9-kb transcript in all the major mu-
rine tissues (Fig. 3), although the level of expression varied
widely. Zfp289 mRNA was expressed at very high levels in
liver, followed by heart and kidney. Skeletal muscle and spleen
had the lowest levels of mRNA expression.

During mammary gland development in mice, Zfp289 mRNA
expression pattern was closely correlated with Id-1 expression
(Fig. 4). We detected high levels of expression of Zfp289 as well
as Id-1 in the mammary gland from virgin (V) mice and during

pregnancy (P) when there is extensive ductal cell proliferation
and lobulo-alveolar development, respectively. The expression
of both genes declined at the beginning of lactation (L) when
the glands fully differentiate and express the milk product
b-casein. Zfp289 and Id-1 were almost undetectable after day 2
of lactation until day 21.

Cellular Localization—Localization studies using EGFP vec-
tor-transfected SCp2 cells showed that GFP-Zfp289 fusion pro-
tein was predominantly present in the cytoplasm with a high
proportion of cells showing perinuclear staining (Fig. 5, B, C,
and D). These data suggest that Zfp289 is not a transcription
factor, which is corroborated by the fact that it contains only
one zinc finger domain and not several like typical transcrip-
tion factors belonging to the zinc finger protein family. This
also suggests a function in the regulation of exocytic and/or
endocytic vesicular transport pathways at the periphery of the
nuclei. The control EGFP plasmid-transfected cells showed
homogenous nonspecific staining all over the cell cytoplasm as
well as nucleus (Fig. 5A).

Functional Analysis of Zfp289—To investigate the func-
tional role of Zfp289, we stably transfected the SCp2 mouse
mammary epithelial cells with two different mammalian ex-
pression vectors (LXSN and pBabe) containing the full-length
coding region of Zfp289. Northern blot analysis of total RNA
from these cells confirmed the constitutive transcription of

FIG. 6. A, Northern blot analysis showing expression of Zfp289 trans-
gene in SCp2 mammary epithelial cells. B, thymidine incorporation in
SCp2 cells transfected with either control plasmid (LXSN or pBabe) or
plasmid containing full-length coding region of Zfp289 gene. Data rep-
resent the average of four independent experiments and is presented as
percentage of control. One-way ANOVA comparing Zfp289-transfected
cells with control cells was significantly different at p , 0.0001.

FIG. 7. Analysis of the GTPase activity of ARF-1 in the pres-
ence of two different amounts of recombinant Zfp289 protein
after 20-min incubation. The data shown are from one of three
independent experiments which showed similar differences. One-way
ANOVA comparing lane 4 versus lane 1 was not statistically different
(p 5 0.074), whereas one-way ANOVA comparing lane 2 (or lane 3)
versus lane 4 was statistically different at p , 0.0001.

FIG. 5. Cellular localization of Zfp289. SCp2 cells were transfected with an empty GFP plasmid (A) or with a GFP plasmid containing the
Zfp289 coding region (B, C, and D) and analyzed using fluorescent microscope.
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transfected Zfp289, which displayed a larger size than the
endogenous Zfp289 mRNA (Fig. 6A). In low serum conditions,
constitutive expression of Zfp289 resulted in higher S-phase
rate of mammary epithelial-transfected SCp2 cells as com-
pared with control plasmid-transfected cells (Fig. 6B). The
difference was more significant in the case of cells transfected
with LXSN (170% of the control) than with pBabe (150% of the
control). This may be due to a higher level of the transgene in
the LXSN vector than in the pBabe vector.

Zfp289 does not appear to play a role in the invasive behavior
of the cells. Even after 2 weeks on extracellular matrix, both
control as well as Zfp289-transfected cells remained associated
within compact spheres (data not shown). In contrast, consti-
tutive expression of Id-1 was able to induce invasion in SCp2
cells (9). We conclude that Zfp289 may be a downstream gene
under the control of the transcriptional regulators of the helix-
loop-helix family. This novel zinc finger protein is potentially
an important mediator of the Id-1-induced proliferation path-
way, but not of Id-1-induced invasiveness and/or migration, in
mammary epithelial cells.

Zfp289 Appears to Be a GAP Protein—We noted above the
homology of sequence between Zfp289 and the yeast GAP
Gcs-1. Since Zfp289 also contains the zinc finger motif shared
by most of the GAP proteins, we examined whether Zfp289 was
functionally a GTPase-activating protein. We analyzed the
GTPase activity of ARF-1 in the presence of two different
amounts of recombinant Zfp289 protein. ARF (ADP-ribosyla-
tion factor) proteins are 20-kDa guanine nucleotide-binding
proteins that are active when GTP is bound. However, hydrol-
ysis of bound GTP requires interaction with a GAP protein, as
ARF itself has no detectable GTPase activity. Zfp289 displays a
strong GAP activity as demonstrated by the decrease of label
associated with ARF-1 (Fig. 7). This is particularly significant
at 200 ng of Zfp289 and already detectable at 50 ng. Zfp289
may therefore correspond to the mammalian counterpart of the
yeast GAP protein, Gcs-1.

DISCUSSION

We have previously reported that Id-1, a dominant negative
regulator of bHLH transcription factors, is not only involved in
the inhibition of differentiation, but also induces proliferation,
migration, and invasion in SCp2 mouse mammary epithelial
cells (8, 9). To learn more about its action, we sought here to
identify transcripts up-regulated in cells transfected with Id-1.
Of the two transcripts we identified, one was the histone H3.3.
This is consistent with the up-regulation of H3.3 during the Go

to S-phase transition in mouse kidney cells (24) and suggests
that histone H3.3 is one of the mediators of Id-1-controlled
proliferation.

Of more interest was the second up-regulated transcript,
Zfp289, which encodes for a zinc finger protein with homology to
the yeast zinc finger protein Gcs-1 and its related protein Glo-3.
Gcs-1 was first identified because of its requirement for transi-
tion of yeast cells from stationary to proliferation phase (23).
Reports have also shown that Gcs-1 protein is a GAP for the ARF
(25) and is involved in regulation of vesicular trafficking and
actin cytoskeleton network (26). Yeast cells containing a func-
tionally mutant Gcs-1 gene were unable to transit from the
stationary phase to growth phase (23) and exhibited vesicle traf-
ficking defects at the nonpermissive 15 °C temperature (27).

Zfp289 seems to be evolutionarily a well conserved protein,
with about 50% homology between mammalian and yeast se-
quences, suggesting a conservation of function as well. The
GAP activity of Gcs-1 has been localized in the N-terminal zinc
finger domain (28), and the Zfp289 sequence in this finger
domain (CxxCx(16)CxxC) is 66% homologous to that of yeast. We
found that Zfp289 appears to have similar function, as it acti-

vates ARF-1-GTPase activity. The intracellular localization ex-
periments in SCp2 cells confirmed that Zfp289 functions pre-
dominantly in the cytoplasm, and in the majority of the cells,
Zfp289-GFP fusion proteins seemed to be concentrated around
the perinuclear region.

When we compared mRNA expression of Zfp289 with that of
Id-1 in the multiple tissue Northern blot, we found a direct
correlation in five out of seven tissues (Fig. 3). The liver
exhibited a relatively low level of Id-1 message compared with
that of Zfp289, while in lung, Id-1 expression was quite high as
compared with that of Zpf289. In these tissues, there may be
additional or other types of controls than Id-l for regulating
Zfp289 gene expression. However, Zfp289 expression paral-
leled that of Id-1 during mammary gland development, with
Zfp289 expressed during ductal (virgin) as well as lobulo-
alveolar (pregnant) morphogenesis, when there is extensive
proliferation of mammary epithelial cells. Its down-regulation
followed the decrease in Id-1 expression in differentiated,
growth-arrested lactating epithelial cells.

The data presented in Fig. 1, A and B, provide indirect
evidence that Zfp289 mRNA expression may be controlled by
Id-1 levels. To establish this relationship directly, it will be
necessary to sequence the Zfp289 promoter, to determine the
presence of E-box motifs and to isolate the Id-1-interacting
bHLH proteins, work now in progress. Nevertheless, this novel
zinc finger protein Zfp289 appears to mediate some of the
Id-1-dependent phenotypic effects on mouse mammary epithe-
lial cells. Functional analysis using retroviral-mediated trans-
fection in SCp2 cells indicates that it may be an important
mediator of Id-1-dependent S-phase entrance (Fig. 6B), a con-
clusion consistent with the known function of the yeast protein.
The increased expression of Zfp289 may confer an advantage in
cell cycle entrance to Zfp289-transfected cells in comparison
with control cells. This may represent an example of the in-
volvement of ARF-GAP proteins in many fundamental cellular
processes such as cell growth and survival, as well as vesicular
trafficking and cytoskeletal organization.

Although we have no direct evidence that Zfp289 plays a role
in migration or invasion of cells, this question should remain
open. Besides the role of the yeast homologue Gcs-1 in the
cytoskeletal organization, it has been found that members of
the GTPase family (such as Rho and Rac) and their activators
can regulate cell migration through their control of actin po-
lymerization and cytoskeletal distribution (29). Our negative
results obtained from invasion assays in Zfp289-transfected
cells may be due to the fact that constitutive expression of
Zfp289 alone is not sufficient to induce the invasive phenotype,
an event that may also require the induction of some other
genes, such as matrix metalloproteinases.
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